Privacy-Aware MapReduce Based Multi-Party Secure Skyline Computation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Privacy Preserving PageRank Algorithm By Using Secure Multi-Party Computation

In this work, we study the problem of privacy preserving computation on PageRank algorithm. The idea is to enforce the secure multi party computation of the algorithm iteratively using homomorphic encryption based on Paillier scheme. In the proposed PageRank computation, a user encrypt its own graph data using asymmetric encryption method, sends the data set into different parties in a privacy-...

متن کامل

Privacy-Preserving Classification and Clustering Using Secure Multi-Party Computation

Nowadays, data mining and machine learning techniques are widely used in electronic applications in different areas such as e-government, e-health, e-business, and so on. One major and very crucial issue in these type of systems, which are normally distributed among two or more parties and are dealing with sensitive data, is preserving the privacy of individual’s sensitive information. Each par...

متن کامل

Quorum-Based Secure Multi-party Computation

This paper describes efficient protocols for multi-party computations that are information-theoretically secure against passive attacks. The results presented here apply to access structures based on quorum systems, which are collections of sets enjoying a naturallymotivated self-intersection property. Quorum-based access structures include threshold systems but are far richer and more general,...

متن کامل

Secure Multi-party Differential Privacy

We study the problem of interactive function computation by multiple parties, each possessing a bit, in a differential privacy setting (i.e., there remains an uncertainty in any party’s bit even when given the transcript of interactions and all the other parties’ bits). Each party wants to compute a function, which could differ from party to party, and there could be a central observer interest...

متن کامل

Unconditionally Secure Multi-Party Computation

The most general type of multi-party computation involves n participants. Participant i supplies private data xi and obtains an output function fi(x1, . . . , xn). The computation is said to be unconditionally secure if each participant can verify, with probability arbitrarily close to one, that every other participant obtains arbitrarily little information beyond their agreed output fi. We giv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information

سال: 2019

ISSN: 2078-2489

DOI: 10.3390/info10060207